Approximation of Solution of Time Fractional Order Three-Dimensional Heat Conduction Problems with Jacobi Polynomials

نویسندگان

  • Hammad Khalil
  • Rahmat Ali Khan
  • Mohammed H. Al-Smadi
  • Asad A. Freihat
  • H. Khalil
چکیده

Abstract. In this paper, we extend the idea of pseudo spectral method to approximate solution of time fractional order three-dimensional heat conduction equations on a cubic domain. We study shifted Jacobi polynomials and provide a simple scheme to approximate function of multi variables in terms of these polynomials. We develop new operational matrices for arbitrary order integrations as well as for arbitrary order derivatives. Based on these new matrices, we develop simple technique to obtain numerical solution of fractional order heat conduction equations. The new scheme is simple and can be easily simulated with any computational software. We develop codes for our results using MatLab. The results are displayed graphically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

Presentation of two models for the numerical analysis of fractional integro-differential equations and their comparison

In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model

Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015